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Abstract
We study the behaviour of protonic conductivity at the transition between
the superionic state with a disordered system of hydrogen bonds and low-
temperature states at which the different types of ordering in the H-bond
network appear (as an example, the M3H(XO4)2 class of crystals is considered).
We apply a lattice-gas-type model incorporating the two-stage Grotthuss
mechanism for proton transport and the interaction between the protons and
distortions of nearest oxygen ions causing a strong quasi-polaron effect. The
temperature dependences of the conductivity and its reorientational inter-bond
and intra-bond contributions are analysed and compared with experimental
measurements as well as with the results obtained on the basis of a simplified
one-minimum approximation for the H-bond potential. Detailed analysis of the
activation energies in the low- and high-temperature phases allows us to infer a
more complex character of the superionic transition, suggesting that a possible
intermediate transition from the state with more strongly localized protons to
the weaker proton-localized state occurred on heating between the ordered and
superionic phases.

1. Introduction

It is observed that the proton dynamics in hydrogen-bonded superprotonic crystals changes
drastically at the transitions from superionic phases with the disordered structure of the H-bond
network to the low-temperature phases with the frozen-in sublattice of hydrogen bonds. The
fast proton transport in the superionic state is achieved mainly due to the thermally activated
hopping with low activation energy (∼0.1 eV), whereas below the superionic transition
temperature the environment containing the H-bonded anionic groups strongly influences the
proton dynamics, resulting in the stronger localization of protons residing on the H bonds and
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a drop in the proton conductivity. It is generally accepted from the results of neutron scattering
studies [1, 2] that the proton transport proceeds in the framework of the two-stage Grotthuss
mechanism involving the transfer of the proton within the H bond (intra-bond motion) and
breaking of the H bond together with the reorientation of the ionic group involved in the H-
bond formation (inter-bond transfer). Despite the detailed experimental investigations of the
proton migration process, there still exist unresolved problems in the theoretical modelling
of this phenomenon. Firstly, such a model must describe accurately the coupling with lattice
distortions which could lead to non-trivial dynamics of protons in the H-bonded network as has
been shown in [3, 4]. Secondly, the above-mentioned two elementary stages of the transport
mechanism must be incorporated into the model to take account of the complex interplay
between inter-bond and intra-bond hopping.

In this work we choose the crystals of the M3H(XO4)2 (M = Rb, Cs, NH4; X = Se, S)
family as the objects for investigation. The reason is that in these compounds the conductivity
is significantly higher in the conducting planes (001) formed by the vertex O(2) oxygens
connected by the virtual H bonds in superionic phases. Thus, we can focus on the analysis of
proton mobility in quasi-two-dimensional systems. The basic crystal structure in the superionic
phase with the lattice vectors
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(a0 = 3.5 Å, c = 22.9 Å) is shown in figure 1(a). There are two XO4 groups and three virtual
(possible) hydrogen bonds f = 1, 2, 3 adjacent to the upper group (XO(1)

4 ) in the unit cell
with coordinate Rm = m1a1 + m2a2 + m3a3. Another three hydrogen bonds near the lower
(XO(2)

4 ) group belong to the neighbouring unit cells with the vectors Rm − af . The proton
transport in the (001) planes is sustained due to the dynamical formation and breaking of the
virtual hydrogen bonds between the O(2)-oxygen ions with a one-third probability of each
hydrogen bond existing. Figure 1(b) represents a typical scheme of proton migration within
the conducting plane with the arrows indicating one of the possible paths for the proton. We
introduce here the transfer parameters 	T and 	R to describe respectively the intra-bond and
inter-bond stages of the transport mechanism. The two different types of ordered H-bond
network usually observed in these systems on cooling are described in more detail in [5, 6].
We note here that whereas the first case is distinguished by parallel sequences of H-bonded
dimers, doubling of the unit cell along one of the translation vectors af occurs with the second
type of ordering (for instance, the H-bond network consists of dimeric sequences along a1-
and a2-directions changing alternately with the translation along a3, which corresponds to the
ordering with the k4 = 1

2b3 vector).
The above-described rearrangements of the H-bond network at the transition from the

superionic phase have been studied in the framework of the lattice-gas-type model [7, 8] with
the following Hamiltonian:

Hp = 1

2

∑
mm′
ff ′

�ff ′(mm′)nmf nm′f ′ − µ
∑
mf

nmf (1)

where nmf = {0, 1} is the proton occupation number for the f th H bond; �ff ′(mm′) is the
energy of the proton interactions; µ denotes the chemical potential which has to be found for
the given average proton concentration.

The effect of the environment is of crucial importance for the proton subsystem properties
of these compounds as well as other proton conductors [5, 9]. In particular, it is shown
in [3] that the coupling with the dynamics of the XO4 tetrahedra can give rise to instability in
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the system and formation of the dimerized H-bonded structure with the frozen-in tetrahedra
distortions which is observed in the compounds of this family. On the other hand, the impact of
the coupling of protons with optical vibration phonon modes on the proton mobility has been
studied theoretically in [6]. However, in this case the process of proton transport was considered
as induced by the reorientational tetrahedra dynamical hopping of the protonic quasi-polarons
between the virtual H bonds with effective transfer parameter 	R , assuming the single-well
approximation for the H-bond potential. As distinct from the previous approach [6], in this
work the mechanism of the proton transport is described in the framework of the generalized
two-stage model which incorporates the process of proton transfer within H bonds and takes
into account the change of the proton transfer integral with the shortening distance between H-
bonded ionic groups. We estimate the contributions of reorientational and intra-bond hopping
terms to the activation energy for proton migration and to the total conductivity coefficient
σ . Furthermore, we compare the temperature behaviour of σ for (NH4)3H(SeO4)2 (TAHSe)
in the vicinity of the superionic transition obtained within our two-stage approach with the
results from the one-minimum approximation [6] and with experimental values given in [10].
The comparison with experiment in the temperature interval T < Tsi (Tsi is the superionic
transition temperature) makes it necessary for us to suggest a significant change of the energy
of binding of the protonic quasi-polaron (formed due to the coupling with O(2) distortions)
with the superionic transition. This change caused by the modification of effective proton–
oxygen distortion interactions induces an additional drastic increase of the activation energy in
the low-temperature ordered phases and is possibly the reason for the precursor effect observed
recently at ∼1.5 K below Tsi in the latest calorimetric studies of M3H(XO4)2 reported in [11].

2. Description of the proton-transport mechanism

The disordered proton subsystem strongly affects the sublattice of ionic groups leading to
rather unusual dynamical behaviour of H-bonded XO4 tetrahedra. Besides the fast rotational
motion of XO4 in superionic phases causing a breaking of H bonds which are weaker (longer)
in superionic states, the appearance of a mobile proton between nearest XO4 tetrahedra induces
distortions of the nearest O(2) oxygens towards the proton (figure 1(c)). As long as the proton
is redistributed between three possible positions (virtual bonds) in the unit cell, the O(2)
oxygens affected by the proton inter-bond hopping can be displaced towards one of the three
distorted positions as well [12], as is indicated in figure 1(c) by arrows. This important aspect
of proton–oxygen coupling observed in x-ray scattering experiments [13–15] reinforces the
necessity of incorporating the interactions with the distortions of oxygen ions into the model.
Firstly, analogously to the simpler approach described in [6], we account for the modification
of the H-bond potential due to above-described anti-phase optical vibration modes of the O(2)
sublattice. The corresponding analytical terms are derived in detail in [6] and we present here
the final expressions in the second-quantization form:

H 1
pr−ph =

∑
mf

∑
qj

τmf (qj)(bqj + b+
−qj )nmf (2)

where b+
qj , bqj are the phonon creation and annihilation operators of the j th optical branch for

the vector q. The coefficients τmf (qj) are given by

τmf (qj) =
√

h̄

2NMωj(q)
∇V exp[iq · Rm]

∑
α=x,y

βα(ujα(1) + ujα(2) exp[iq · af ]) (3)

where

βx = (−1, 1, 0) βy = 1√
3
(1,−1,−2)
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Figure 1. (a) The projection of the rhombohedral primitive unit cell of M3H(XO4)2 with lattice
vectors a1, a2, a3 on the (001) plane in the hexagonal coordinate system in the superionic phase.
The open, solid and hatched big circles correspond to the possible positions of O(2) oxygens with
the different values of z; A (z = 0), B (z = 1/3) and C (z = −1/3) denote the positions of X atoms
in XO(2)

4 groups. The small circles indicate the proton positions within the hydrogen bond. (b) The
H-bond network in the (001) plane in the disordered superionic phase with average occupancies of
each virtual bond (m, f ) (indicated by dashed line) n̄mf = 1/3. (c) A schematic representation of
the distortions (shown by arrows) of the nearest oxygen ions O(2) from the central positions (the
three possible distorted positions for each O(2) are indicated by large circles) towards the proton
located between them.

where ∇V is the change of the proton potential with the change of the inter-oxygen distance,
M is the oxygen ion mass; ωj(q) are the phonon frequencies and the ujα(l) given by

u1(1; 2) = [0,−1; 0, 1] u2(1; 2) = [−1, 0; 1, 0]

(j = 1, 2 denotes the j th anti-phase vibration branch and the index l = 1, 2 corresponds to
the upper and lower sublattices of O(2)(l) oxygens) are the polarization vectors of the O(2)-
oxygen subsystem. The vibration energy of the O(2) oxygens in the harmonic approximation
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Figure 1. (Continued)

is given by

Hph =
∑
qj

h̄ωj (q)b
+
qj bqj . (4)

We turn now to the two-stage process of proton migration. To describe various proton
configurations in the double-well H-bond potential, the following states for a proton on each
(m, f ) bond are introduced:

|0〉mf = |00〉mf |a〉mf = |10〉mf |b〉mf = |01〉mf . (5)

The first state corresponds to the absence of H bonds (no protons between the nearest vertex
oxygens) and the two other states |a〉mf and |b〉mf describe one proton in the left or right
well on the bond. We eliminate the state |11〉mf with two protons between ionic groups (the
Bjerrum D defect) assuming extremely strong repulsion between the protons in this state. On
introducing the Hubbard operators X

pr

mf = |p〉mf 〈r|mf , the quantum tunnelling within the
H bond with the tunnelling integral 	T can be represented by the following term:

HT = 	T

∑
mf

(Xab
mf + Xba

mf ) (6)

whereas the reorientation inter-bond hopping term [6] takes here the form

HR = 	R

∑
f

f �=f ′

(Xa0
mfX

0a
mf ′ + Xb0

mfX
0b
m+af −af ′ ,f ′) (7)
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with the inter-bond transfer integral 	R . The operators of proton occupancy for the H bond
can be expressed in terms of the Hubbard operators as nmf = Xaa

mf + Xbb
mf . In addition to (2),

we take into account the modification of the intra-bond tunnelling integral due to the coupling
with the vertex oxygen vibrations:

H 2
pr−ph =

∑
mf

∑
q

j=2,4

ρmf (qj)(bqj + b+
−qj )(X

ab
mf + Xba

mf ). (8)

The coefficients ρmf (qj) have a form similar to (3), by geometric reasoning, with the
substitution of ∇	T in place of ∇V , where the parameter ∇	T characterizes the modification
of 	T with the change of the distance between H-bonded oxygens.

Applying the unitary Lang–Firsov transformation,

H̃ = exp(iS)H exp(−iS)

S =
∑
mf

s=a,b

vmf sX̃
ss
mf vmf s = i

∑
qj

τ smf (qj)

h̄ωj (q)
(bqj − b+

−qj )

τ
a/b

mf (qj) = τmf (qj) ± ρmf (qj) X̃ss
mf = 1

2
(Xaa

mf + Xbb
mf ± (Xab

mf + Xba
mf ))

(9)

where H is given by the expressions (1)–(8), allows us to diagonalize the terms (6) and (8)
and consider the new equilibrated states of relaxed O(2) oxygens with protonic quasi-polarons
formed due to the coupling (2) and (8). We present below the Hamiltonian (9) with inter-proton
interactions taken in the mean-field approximation:

H̃ =
∑
mf

{(	T − µ)X̃aa
mf − (	T + µ)X̃bb

mf } +
∑
mf s

γf s(m)X̃ss
mf +

∑
qj

h̄ωj (q)b
+
qj bqj + H̃R + U0

(10)

where γf s(m) = γf (m) − δsmf − -s
mf is the internal field

γf (m) =
∑
m′f ′

�ff ′(mm′)〈nm′f ′ 〉

renormalized by the coupling with oxygen distortions:

δsmf =
∑
m′f ′s ′

∑
qj

τ smf (qj)τ
s ′
m′f ′(−qj)

h̄ωj (q)
〈X̃s ′s ′

m′f ′ 〉 -s
mf =

∑
qj

|τ smf (qj)|2
h̄ωj (q)

U0 = −1

2

∑
mf
m′f ′

�ff ′(mm′)〈nmf 〉〈nm′f ′ 〉 +
∑
mf s
m′f ′s ′

∑
qj

τ smf (qj)τ
s ′
m′f ′(−qj)

h̄ωj (q)
〈X̃ss

mf 〉〈X̃s ′s ′
m′f ′ 〉

with 〈X̃ss
mf 〉 denoting the average occupancy of the proton state |s̃〉mf (s = a, b). The part (7)

describing the rotational hopping after the transformation (9) takes the form

H̃R = 	R

2

∑
m

f �=f ′

∑
ss ′

{(−1)δss′ +1X̃s0
mf X̃

0s ′
mf ′Z

ss ′
ff ′(mm)

+ X̃s0
mf X̃

0s ′
m+af −af ′ ,f ′Z

ss ′
ff ′(m,m + af − af ′)}

where the operators

Zss ′
ff ′(mm′) = exp

{
−

∑
qj

-τ ss
′

ff ′(qj |mm′)(bqj − b+
−qj )

h̄ωj (q)

}

-τss
′

ff ′(qj |mm′) = τ smf (qj) − τ s
′

m′f ′(qj)

(11)



The superionic phase transition in hydrogen-bonded systems of the M3H(XO4)2 class 4087

specify the band-narrowing factors generalized by introducing here double-well proton states.
In order to analyse the protonic conductivity in the framework of Kubo theory [16], we

should evaluate the expression for the correlation function 〈J (z)J (0)〉 where z is the time
argument. The proton current operator

J = e

ih̄
[H, x]

(where

x =
∑
mf s

Xss
mf Rs

mf

is the proton polarization operator, Rs
mf (s = a, b) are the proton coordinates in the double-well

H bond) after transformation (9) consists of two parts: J̃ = J̃T + J̃R . The first term

J̃T = e

ih̄

∑
mf

Rab
f

(
	mf Z̄

ba
ff (mm)

+
1

2

∑
qj

ρmf (qj)[Bqj Z̄
ba
ff (mm) + Z̄ba

ff (mm)Bqj ]

)
X̃ba

mf + H.c. (12)

describes the intra-bond transfer processes assisted by the oxygen dynamics. Here

Rab
f = Ra

mf − Rb
mf Bqj = bqj + b+

−qj

and

	mf = 	T + 2
∑
m′f ′s ′

∑
qj

τ s
′

m′f ′(−qj)

h̄ωj (q)
ρmf (qj)〈X̃s ′s ′

m′f ′ 〉 + 2
∑
qj

ρmf (qj)τmf (−qj)

h̄ωj (q)
.

The rotation part of the current operator is given by

J̃R = − e

ih̄

	R

2

∑
m

f �=f ′

∑
ss ′

Rff ′
(
(−1)δss′ +1X̃s0

mf X̃
0s ′
mf ′Z̄

ss ′
ff ′(mm)

− X̃s0
mf X̃

0s ′
m+af −af ′ ,f ′Z̄

ss ′
ff ′(m,m + af − af ′)

)
(13)

where

Rff ′ = Ra
mf − Ra

mf ′ = −(Rb
mf − Rb

m+af −af ′ ,f ′)

Z̄ss ′
ff ′(m,m′) = Zss ′

ff ′(m,m′) − 〈Zss ′
ff ′(m,m′)〉.

The resulting conductivity coefficient can be written as σ(ω) = σT + σR + σTR , where σT is
the contribution from the intra-bond transfer processes, σR corresponds to the reorientational
phonon-assisted hopping and σTR describes the mixed intra-bond + reorientation dynamics.

First we focus on the essentially new intra-bond contribution to σ arising from the
thermally activated proton hopping in a double-well potential. To derive the expression for
σT in the second-order perturbation theory with respect to 	R , we assume the existence of a
regime of strong proton–phonon coupling for our system when the following condition is valid:

∑
qj

|-τss
′

ff ′(mm′|qj)|2
(h̄ωj (q))2 sinh 1

2βh̄ωj (q)
� 1.

Using the method of steepest descent to perform the time integration [17], we obtain the
following expressions for σT along the direction given by the vector r:

σ r
T (ω, T ) = e2

h̄2

√
π

vc
τ̃ abT e−βEab

T /3 sinh βh̄ω/2

h̄ω/2

∑
f

(Rab
f (r))2(s

(1)
f 〈X̃bb

mf 〉 + s
(2)
f 〈X̃aa

mf 〉) (14)
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where Rab
f (r) is the projection of Rab

f on r and the weight factors are given by

s
(j)

f =
[
	2

f − 2

9
n̄0(1 + n̄0)(E

ab
T )2

]
c
(j)

f,0 +
1

9
(Eab

T )2
(
(1 + n̄0)

2c
(j)

f,−2 + n̄2
0c

(j)

f,2

)
+

1

3
Eab

T

[(
±2	f +

1

2
h̄ω0

)
(1 + n̄0)c

(j)

f,−1 +

(
∓2	f +

1

2
h̄ω0

)
n̄0c

(j)

f,1

]
. (15)

The coefficients

c
(1/2)
f,l = exp(±1

2
βh̄	f,l − (τ̃ abT )2(ω ± 	f,l)

2)

(h̄	f,l = −2	T + γf b − γf a + lh̄ω0) and n̄0 is the average number of phonons with the energy
h̄ω0 determined by the Bose distribution. The polaron binding energy

Eab
T = (h̄∇vab)

2

2M(h̄ω0)2

(∇vab = ∇va − ∇vb = 2∇	T , ∇va/b = ∇V ± ∇	T with ωj(q) = ω0 taken in the
dispersionless approximation) is required to provide a hopping of the protonic polaron between
two localized positions within the H bond, and the parameter τ̃ abT which is given by

1

(τ̃ abT )2
= 2

∑
qj

|-τabff (mm|qj)|2
h̄2 sinh 1

2βh̄ωj (q)
(τ̃ abT )2 = 3

16
β

h̄2

Eab
T

(16)

characterizes the average hopping time length between two localized positions within the
H bond.

To evaluate the correlation functions 〈J̃R(z)J̃R〉 we apply the following decoupling
procedure for the proton part given by Hubbard operators:

〈X̃s0
kf ′(z)X̃

0s ′
k′f (z)X̃

s ′0
k1f

X̃0s
k′

1,f
′ 〉 → δk,k′

1
δk′k1〈X̃s0

kf ′(z)X̃
0s
kf ′ 〉〈X̃0s ′

k′f (z)X̃
s ′0
k′f 〉 (17)

in the reciprocal-space representation:

X̃s0
mf = 1√

N/2

∑
k

X̃s0
kf eik·Rm .

Using the inter-bond current part (13) and approximation (17), we have the following exp-
ression for inter-bond contribution:

σ r
R = e2

h̄2

√
π

vc

	R

2N2

∑
f �=f ′

(Rr
ff ′)

2
∫ ∞

0
dt ei(ω+iε)t

×
∫ β

0
dλ

∑
k,k1

{∑
ss ′

P ss ′
e−(z+ 1

2 ih̄β)
2/4(τ̃ ss

′
R )2〈X̃s0

k,f (z)X̃
0s
k,f 〉〈X̃0s ′

k1,f ′(z)X̃
s ′0
k1,f ′ 〉

}

(18)

with z = t − ih̄λ, P ss = e−5βEs
R/6 and P ab = e−βEab

R /3. In contrast to the simple
one-well approach [6], we have in (18) instead of the one-polaron dissociation energy
E0 = (h̄∇V )2/2M(h̄ω0)

2 three different Ess ′
R given by

Es
R = (h̄∇vs)

2

2M(h̄ω0)2
Eab

R = h̄2[(∇va)
2 + (∇vb)

2 + ∇va ∇vb/2]

2M(h̄ω0)2
. (19)

Consequently, instead of only one effective time parameter τ̃ (τ̃ 2 = 3
40βh̄

2/E0) we have three
different parameters τ̃ sR and τ̃ abR :

(τ̃ ssR )2 = 3

40
βh̄2/Es

R (τ̃ abR )2 = 3

16
βh̄2/Eab

R (20)
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characterizing the average time length of the proton inter-bond hopping between the states
|s̃〉f → |s̃〉f ′ (s = a, b) and |ã〉f → |b̃〉f ′ , |b̃〉f → |ã〉f ′ . It is worth noting that the relation
τ̃ abT > {τ̃ abR , τ̃ sR} follows from (16) and (20) (τ̃ ss

′
R /τ̃ abT ∼ 0.1), i.e. the rate of proton transfer

within the H bond is lower than that of the rotational hopping. This is in agreement with the
results of the modelling by MD simulations in [18] as well as with experimental data [1]. We
use, analogously to the intra-bond case, the steepest-descent approach for time integration in
(18). Furthermore, the analysis of the term σTR shows that the latter is negligibly small at
temperatures in the vicinity of the superionic phase transition in comparison with (14) and (18)
for the strong-proton–phonon-coupling regime due to the presence of additional prefactors like

P s
2 = exp

(
− Es

R

β(h̄ω0)2
(α cosh βh̄ω0/2 − 1)

)
(α = constant > 0).

Next we determine the averages 〈X̃s0
k,f (z)X̃

0s ′
k,f ′ 〉 and

〈X̃ss ′
mf 〉 = 2

N

∑
k

〈X̃s0
kf X̃

0s ′
kf 〉

appearing in (14) and (18) using the spectral theorem which allows one to express these
quantities in terms of the corresponding Green functions

Gss ′
ff ′(ii

′|k) = 〈〈X̃0s
kf |X̃s ′0

kf ′ 〉〉ω.
To develop the equations of motion for Gss ′

ff ′(ii ′|k) (the labels i = {+,−} correspond to even
and odd indices m3 of the mth unit cell respectively),

(h̄ω + 	T (−1)δsa + µ − γ i
f s)G

ss ′
ff ′(ii

′|k)

= (〈X̃00
f i〉 + 〈X̃ss

f i〉)
{
δss

′
ff ′(i − i ′)

+
	R

2

∑
f ′

1 �=f

∑
s ′

1

〈Zss ′
1

ff ′
1
〉[(−1)1+δs′1 ,s′G

s ′
1s

′

f ′
1,f

′(ii
′|k) + e−ik(af −af ′

1
)
G

s ′
1s

′

f ′
1,f

′(i
′
1i

′|k)]}

(21)

(here 〈X̃00
f i〉 = 1 −〈X̃aa

f i 〉− 〈X̃bb
f i〉 and the index: i ′1 = i if f and f ′

1 �= 3; i ′1 = ī if f or f ′
1 = 3)

we apply the Hubbard-I-type decoupling procedure:

〈〈X̃s1s2
m1f1

X̃0s
mf |X̃s ′0

m′f ′ 〉〉ω → 〈X̃s1s2
m1f1

〉〈〈X̃0s
mf |X̃s ′0

m′f ′ 〉〉ω.
As the starting point in the solution of the system (21) by the iteration procedure, we take the
averages 〈X̃ss

f i〉 determined from 〈nf i〉 with the system Hamiltonian (10). In this case, for the
description of the different types of proton ordering occurring in M3H(XO4)2 we introduce the
order parameters [7]. Specifically, to describe the transition from the superionic disordered
phase to the orientation state characterized by the vector k4 = 1

2b3 in phase III (TAHSe) and
k7 = 0 (phase IV with parallel sequences of H-bonded dimers), we consider the two order
parameters

u = 1√
2
(〈n1+〉 − 〈n2+〉) v = 1√

6
(〈n1+〉 + 〈n2+〉 − 2〈n3+〉) (22)

with the thermodynamical averages 〈n1−〉 = 〈n2+〉, 〈n2−〉 = 〈n1+〉 and 〈n3−〉 = 〈n3+〉. Here
the internal fields γf (m) take the forms

γ1/2(m) = γ0 + av ± beik4·Rmu γ3(m) = γ0 − 2av
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where

γ0 = n̄

3

∑
f ′

�ff ′(0) a = 1√
6

[�11(0) − �12(0)] b = 1√
2

[�11(k4) − �12(k4)]

(�ff ′(k) is the Fourier transform of the proton interaction potential �ff ′(mm′)).
To develop the expressions for the average proton occupancies 〈nf i〉, we apply the

high-density expansion method with additional inclusion of the Gaussian molecular-field
fluctuations (GFA) [6]. This approach provides a significant decrease of the evaluated super-
ionic transition temperature and makes possible a quantitative comparison between the results
obtained theoretically and experimental data. For example, for b̃ = b/a = 1.688 cor-
responding to TAHSe crystal [5], we have T GFA

c = 330 K which agrees closely with the
experimentally obtained value Tc = 302 K.

In this way, using the above-mentioned self-consistent procedure for the determination of
〈X̃ss

f i〉 and 〈X̃s0
k,f (z)X̃

0s ′
k,f ′ 〉 provides the possibility of evaluating the conductivity on the basis

of expressions (14) and (18). We shall discuss later the consequences of the proton–phonon
coupling effect, intra-bond proton transfer and the superionic phase transformations, focusing
on the analysis of the conductivity coefficients obtained.

3. Discussion of the results

Since it is observed that the protonic conductivity changes drastically at the superionic phase
transition, the problem of prime interest to us is that of analysing the temperature behaviour
of the static conductivity coefficients. The calculated conductivity σ(T ) is represented in
figure 2. One can see that at τ = τsi (τsi = kTsi/|a|), σ strongly increases, which is related to
the change of the activation energy (see the insets of figure 2). Examination of the expressions
(14) and (18) reveals that several different activation energies exist in the system in principle,
which correspond to the contributions of the different transfer processes (the polaron hopping
between different sublattices (H bonds) f or the intra-bond transfer within one sublattice f ),
and appear in the expression for the conductivity with different weight prefactors which in turn
vary with temperature. The activation energy for the polaron intra-bond hopping is given by

ET
a ∼ 1

3
Eab

T ± 1

2
h̄	f,l − (τ̃ abT )2(	f,l)

2 (23)

whereas the activation energies for the inter-bond orientational hopping have the forms

ER(s)
a ∼ 5

6
Es

R ± 1

2
(γf s − γf ′s) − (τ̃ sR)

2(γf s − γf ′s)
2

ER(ab)
a ∼ 1

3
Eab

R ± 1

2
(−2	T + γf b − γf ′a) − (τ̃ abR )2(−2	T + γf b − γf ′a)

2.

(24)

We see that the expressions (23) and (24) consist of the polaronic part (the first terms) and
the parts which appear as a result of the transfer process, inter-proton interactions and proton
orderings. Clearly, the activation energies should increase due to the second and third terms
for τ < τsi when the proton ordering occurs in the system. We conclude from the insets
of figure 2 that the activation energies in the superionic phases are actually lower that those
in the ordered phases. It is apparent also that the drastic increase of σ obtained from (14)
and (18) is significantly sharper as compared to the results obtained using the one-minimum
approximation of the H-bond potential [6], when the inter-bond proton hopping process was
neglected.

The increasing proton–phonon coupling parameters ∇V and ∇	T induce a decrease of
σ due to the stronger localization of the proton within the H bond (see the dependences σ(T )
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Figure 2. Temperature dependencies of the static protonic conductivity σ̃ = σ/c0 (bold solid line)
(c0 = e2√πa2

0/h̄vc) and its intra-bond and inter-bond hopping parts for ωT = 0.05, ωR = 0.3,
Eab
T /|a| = 0.2, E0/|a| = 1.0. (a) b̃ = b/|a| = 1 (the first-order superionic phase transition to the

ordered state with the phase IV (TAHSe) proton ordering type) and (b) b̃ = 1.73 (the first-order
superionic phase transition to the ordered state with the phase III (TAHSe) proton ordering type).
The curves denoted by thin solid lines correspond to the one-minimum H-bond approximation [6];
insets: the conductivity on a logarithmic scale along different directions.

plotted in figure 3(a) for different values of E0 and Eab
T ). It also becomes apparent from

figure 3 that the intra-bond dynamics strongly influences the magnitude of σ and the jump -σ

at τ = τsi . The increase of 	T and |∇	T | leads to a lowering of σ and a decrease of -σ . This
effect is caused by the fact that the intensification of the intra-bond proton dynamics gives rise
to the tendency of loss of the proton ‘sensitivity’ to the surroundings. We emphasize also that
σR also drops with increasing 	T (see σR for different Eab

T in the inset of figure 3(a)). The
increase of 	T occurs due to the shortening of the O–O distance between H-bonded oxygens
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Figure 3. (a) The temperature dependence of σ for b̃ = 1.73; the bold and thin solid curves
correspond to the cases of Eab

T /|a| = 0.2, ωT = 0.05, ωR = 0.3; E0/|a| = 1.0 and E0/|a| = 1.5
respectively. The dashed and dotted curves indicate the cases where Eab

T /|a| = 0.4, E0/|a| = 1.0,
ωR = 0.3; ωT = 0.05 and ωT = 0.3 respectively. (b) The temperature dependence of the
intra-bond contribution σT for b̃ = 1.73, ωR = 0.3 and E0/|a| = 1.0.

and the consequent strengthening of the H bond [19]. Therefore, more effort would be needed
to break the H bond in comparison to the case for smaller 	T , and this is the reason for the
decrease of the orientational inter-bond contribution σR . The decrease of 	T leads also to
larger values of the phonon-assisted transfer part σT (see figure 3(b)). On the one hand, the
fact that there is increase of σ with decrease of 	T is at variance with the well known results
concerning the decrease of the conductivity upon D → H substitution. However, on the other
hand, the substitution of D for H should induce an increase of the activation energy and, as a
result, larger values of the polaronic binding energies E0 and Eab

T required to provide hopping
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of a protonic polaron between two H bonds, and between two localized positions within the
H bond respectively. The latter effect causes the conductivity to decrease as shown in figure 3.

Figure 4 shows the comparison of the theoretical conductivity obtained for TAHSe with the
experimentally measured values [10] as well as with the result obtained using the previous one-
minimum approximation [6]. The values of ∇V and ∇	T can be found from the dependences
of the proton potential and tunnelling splitting energy on the distance between the oxygen ions
evaluated in [19, 20]: in this case, ∇V � 2.4 eV Å−1 and ∇	T � −0.5 eV Å−1. The two-
stage approach gives us a significantly higher drastic increase of σ as compared to the results
of [6]. We see that the conductivity coefficient is in better agreement with experiment [10]
as compared to the results of reference [6], especially in the temperature region τ < τsi .
However, the jump -σ is sharper than that measured experimentally. It is interesting also
that the contributions of the inter-bond and intra-bond processes differ strongly in different
phases (see the inset of figure 4). The σR- and σT -contributions are of the same order in the
superionic phase, whereas in the low-temperature ordered phases the reorientational hopping
term σR is dominant and the intra-bond phonon-activated transfer is of lesser importance.
Since, as we see, the discrepancies between experiment and theoretical results still remain
after applying the more sophisticated two-stage treatment of proton transport incorporating
the intra-bond transfer, let us analyse the activation energies for the conductivity in detail.
It is known from [10] that the activation energy for the conductivity increases strongly from
∼0.32 eV in the superionic phase to ∼0.8 eV in the ordered phases. Although the activation
energies (23) and (24) evaluated on the basis of (14) and (18) give a good agreement with
experiment in the superionic state (∼0.37 eV), in the ordered states we have still lower values
forEa (∼0.45 eV). The one-minimum approximation [6] gives us ∼0.4 eV for τ < τsi . Indeed,
now that we have performed the analysis of both of the terms σR and σT , we understand that,
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Figure 4. Comparison of the temperature dependences of the protonic conductivity, measured for
the crystal TAHSe [10] (�), evaluated theoretically (bold curve) (in this case of 	T = 70 cm−1,
	R = 175 cm−1, h̄ω0 = 455 cm−1) and obtained using the one-minimum H-bond approximation
[6] (thin curve).
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since the contribution of σR at τ < τsi is predominant, the inclusion of intra-bond hopping
makes just a small correction to σ in this temperature region, as is clear from the inset of
figure 4. Therefore, the question that arises is: what other additional subtle reason can there
be for the increase of Ea in the ordered state? The terms (24), giving in fact the activation
energies at τ < τsi , contain two essentially different parts. The part arising due to the inter-
proton interactions changes only slightly on using a better approximation (using for instance
the GFA [6] instead of the mean-field approach). Thus, the main reason for the change of Ea

can only be the first terms in expressions (24) proportional to the polaron binding energies.
Since the difference between experimental and theoretical values of Ea is about 0.35 eV, we
can conclude that the polaron binding energies should increase by ∼0.42 eV (see Es

R in (24))
in the low-temperature phases, reflecting the drastic increase of the polaron effective mass [21]

m∗ ∼ m exp

[
5E0

3h̄ω0

]
exp

[
5Eab

T

12h̄ω0

]
(m is the bare proton mass), and consequently strengthening the localization of the proton
between nearest oxygen ions. This additional transition between the state with weaker proton–
phonon coupling at τ > τsi (smaller polaron mass) and the state with stronger coupling at
τ < τsi (large polaron mass) has rather discontinuous character (with the jump of the polaron
mass -m ∼ exp[5-Ea/3h̄ω0], -Ea ∼ 0.42 eV) and resembles the small-to-large-polaron
transition occurring with a change of coupling to a certain phonon mode [22, 23] studied
extensively for electron–phonon systems. Therefore, we can suggest that the redistribution
of the proton at the transition between the superionic and ordered states must have a more
complicated character incorporating at least two steps. First, with the temperature increasing,
the polaron binding energy drops sharply due to the decrease of the effective proton–lattice
distortion coupling. Second, the proton becomes redistributed between three possible H bonds
in the unit cell with equal probability. In principle, the temperatures of the two stages could
be different, which is a subject for further more sophisticated analysis. We just note here that
for Rb3D(SO4)2 crystal, NMR experiments [24] have detected deuteron inter-bond motion
as a precursor of superionic conductivity already at 170 K below the superionic transition.
Moreover, the latest scanning calorimetric measurements [11] show instead of the previously
assumed single jump of the entropy -S = R ln 3 at τ = τsi , a step-like increase of the entropy
already at ∼1.5 K below the transition to the superionic state with only the total entropy
change found to be R ln 3. These results, exhibiting the sequential step-like redistribution of
protons in the H-bonded network, support our conclusion. Further, to study comprehensively
the temperature for the possible transition between the large- and smaller-polaron regimes, a
more complicated scheme has to be used, incorporating the additional order parameter -τ

describing the change of proton–phonon coupling energy.

4. Summary

In conclusion, it is worth noting that the two-stage proton-transport mechanism introduced
allows us to describe both the intra-bond and inter-bond contributions to the conductivity.
The expression for the conductivity is derived using the Kubo theory for the regime of strong
coupling between protons and anti-phase vibrational modes of the oxygen ions involved in the
H-bond formation, which leads to the shortening of this bond and to the strong quasi-polaronic
effect. The large energies of interaction between the protons and the oxygen distortions induce
a significant decrease of the conductivity values due to proton localization within the H bond.
The comparison with experiment makes it possible to draw several important conclusions.
First, the inter-bond hopping process makes the main contribution to σ at τ < τsi . Second, it
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appears that the transition to the superionic state has a more complicated character involving
a possible intermediate transition between the ordered state with a completely frozen-in H-
bonded system and the superionic state with the protons redistributed between virtual H bonds
with equal probability. The mechanism of this additional transition exhibiting a drastic change
of the effective interaction between the protons and nearest O(2)-oxygen ions is a subject for
further more sophisticated theoretical analysis.
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